学河网 > 范文 > 正文

​烙饼问题教学设计一等奖

2023-06-20 16:44 来源:学河网 点击:

烙饼问题教学设计一等奖

1、烙饼问题教学设计

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

image.png

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:寻找合理、快捷的烙饼方案。

教材简析:∮饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设: ① 一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)

② 先同时烙两张,再单烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)

师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)

师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)

生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

2、烙饼问题教学设计

数学广角--烙饼问题

教学内容:

教科书第112页到第113页例1

教学目标:

1、初步掌握优化思想

2、能够用优化思想解决生活中的问题。

3、感受数学的魅力。

教学重点及难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼烙法。

学具准备:圆形纸片、多媒体课件

教学过程:

一、引入。

师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)

师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!

二、新授。

1、师:比方说这里有口锅,每次可以烙两张饼。(边说边拿圆形纸片演示)一张饼的一面3分钟能烙熟,那一张饼多长时间能烙熟?

生:6分钟

师:为什么?

生:因为一张饼一面是3分钟,两面就是6分钟

师:如果我想烙两张饼呢?需要多少时间?刚刚一张饼用了6分钟,所以两张饼应该会用12分钟,我说的对吗?

生:(提出疑问)不对,应该是6分钟。

师:为什么是6分钟呢?

生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。

师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)

2、突破难点。

师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?

生:先烙两张,再烙一张,一共需要12分钟。

师:你们都的这样烙的吗?那还有没有更好的方法呢?

(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。

小组汇报:

师:谁想上来给大家汇报一下你们组讨论的结果。

生:汇报讨论结果。

师在表格内板书

1 2 3

第一次 正 正

第二次 反  正

第三次  反 反

师:谁听明白了?

(生再讲一遍)。

此时教师用纸片往黑板上贴每次的情况。

师:大家觉得这种方法怎么样?

生:比上种方法节约时间,比较快。

师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)

师:那这样才能不浪费时间呢?

生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)

师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

三、拓展提高。

师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。

(生小组研究)

生:把4看成2+2 把6看成2+2

(及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知蚀解决)

师:你听明白了吗?她是把4张饼、6张饼,都两张两张的烙,如果是8张、10 张饼呢?你想象一下,怎样烙?

聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?

生:双数

你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?

生:可以用烙两张饼的方法,两张两张的烙

板书:双数张饼:两张两张的烙

师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。

把5张饼烙两张,再把那3张按刚才的好办法烙。

把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:谁能概括的说一说你发现的规律

生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。

四、师生交流,思维升华。

师:通过这节课的学习,你知道了什么?

师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学

3、烙饼问题教学设计

数学广角--烙饼问题

教学内容:

教科书第112页到第113页例1

教学目标:

1、初步掌握优化思想

2、能够用优化思想解决生活中的问题。

3、感受数学的魅力。

教学重点及难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼烙法。

学具准备:圆形纸片、多媒体课件

教学过程:

一、引入。

师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)

师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!

二、新授。

1、师:比方说这里有口锅,每次可以烙两张饼。(边说边拿圆形纸片演示)一张饼的一面3分钟能烙熟,那一张饼多长时间能烙熟?

生:6分钟

师:为什么?

生:因为一张饼一面是3分钟,两面就是6分钟

师:如果我想烙两张饼呢?需要多少时间?刚刚一张饼用了6分钟,所以两张饼应该会用12分钟,我说的对吗?

生:(提出疑问)不对,应该是6分钟。

师:为什么是6分钟呢?

生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。

师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)

2、突破难点。

师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?

生:先烙两张,再烙一张,一共需要12分钟。

师:你们都的这样烙的吗?那还有没有更好的方法呢?

(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。

小组汇报:

师:谁想上来给大家汇报一下你们组讨论的结果。

生:汇报讨论结果。

师在表格内板书

1 2 3

第一次 正 正

第二次 反  正

第三次  反 反

师:谁听明白了?

(生再讲一遍)。

此时教师用纸片往黑板上贴每次的情况。

师:大家觉得这种方法怎么样?

生:比上种方法节约时间,比较快。

师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)

师:那这样才能不浪费时间呢?

生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)

师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

三、拓展提高。

师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。

(生小组研究)

生:把4看成2+2 把6看成2+2

(及时的'表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知蚀解决)

师:你听明白了吗?她是把4张饼、6张饼,都两张两张的烙,如果是8张、10 张饼呢?你想象一下,怎样烙?

聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?

生:双数

你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?

生:可以用烙两张饼的方法,两张两张的烙

板书:双数张饼:两张两张的烙

师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。

把5张饼烙两张,再把那3张按刚才的好办法烙。

把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:谁能概括的说一说你发现的规律

生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。

四、师生交流,思维升华。

师:通过这节课的学习,你知道了什么?

师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学

4、烙饼问题教学设计

教学内容:

教科书第112页到第113页例1

教学目标:

1、初步掌握优化思想

2、能够用优化思想解决生活中的问题。

3、感受数学的魅力。

教学重点及难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼烙法。

学具准备:圆形纸片、多媒体课件

教学过程:

一、引入。

师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)

师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的'数学问题呢!

二、新授。

1、师:比方说这里有口锅,每次可以烙两张饼。(边说边拿圆形纸片演示)一张饼的一面3分钟能烙熟,那一张饼多长时间能烙熟?

生:6分钟

师:为什么?

生:因为一张饼一面是3分钟,两面就是6分钟

师:如果我想烙两张饼呢?需要多少时间?刚刚一张饼用了6分钟,所以两张饼应该会用12分钟,我说的对吗?

生:(提出疑问)不对,应该是6分钟。

师:为什么是6分钟呢?

生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。

师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)

2、突破难点。

师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?

生:先烙两张,再烙一张,一共需要12分钟。

师:你们都的这样烙的吗?那还有没有更好的方法呢?

(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。

小组汇报:

师:谁想上来给大家汇报一下你们组讨论的结果。

生:汇报讨论结果。

师在表格内板书

1 2 3

第一次 正 正

第二次 反 正

第三次 反 反

师:谁听明白了?

(生再讲一遍)。

此时教师用纸片往黑板上贴每次的情况。

师:大家觉得这种方法怎么样?

生:比上种方法节约时间,比较快。

师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)

师:那这样才能不浪费时间呢?

生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)

师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

三、拓展提高。

师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。

(生小组研究)

生:把4看成2+2 把6看成2+2

(及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知蚀解决)

师:你听明白了吗?她是把4张饼、6张饼,都两张两张的烙,如果是8张、10 张饼呢?你想象一下,怎样烙?

聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?

生:双数

你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?

生:可以用烙两张饼的方法,两张两张的烙

板书:双数张饼:两张两张的烙

师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。

把5张饼烙两张,再把那3张按刚才的好办法烙。

把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:谁能概括的说一说你发现的规律

生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。

四、师生交流,思维升华。

师:通过这节课的学习,你知道了什么?

师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学

5、烙饼问题教学设计

教材简析:

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的.多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

学情分析:

1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

3、学生认知障碍点:“优化”的理解。

教学目标:

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

教学重点:

体会优化思想。教学难点:探究解决问题的最佳方案。

教学过程:

一、 教学环节:

1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。

二、 教师活动:

1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。

三、 预设学生行为:

1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

四、 设计意图:

从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

板书设计:

烙饼问题

快速烙饼法

饼速X3=所需最少的时间

学生学习活动评价设计:

充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。

6、烙饼问题教学设计

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:

初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:

寻找合理、快捷的烙饼方案。

教材简析:

∮饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设:

① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

② 先同时烙两张,再单烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

7、烙饼问题教学设计

教材简析:

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

学情分析:

1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

3、学生认知障碍点:“优化”的理解。

教学目标:

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

教学重点:

体会优化思想。教学难点:探究解决问题的最佳方案。

教学过程:

一、 教学环节:

1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。

二、 教师活动:

1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。

三、 预设学生行为:

1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

四、 设计意图:

从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

板书设计:

烙饼问题

快速烙饼法

饼速X3=所需最少的时间

学生学习活动评价设计:

充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。

8、烙饼问题教学设计

【教学目标】

1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

2、在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生观察能力与立思考能力,发展学生的思维。

3、 通过交流争辩活动,使学生体会交流争辩这一学习方法的价值。

【教具准备】大圆(锅子)一个,小圆(烙饼)9个,多媒体课件一套

【学具准备】每两位学生一份学具,包括一个大圆与九个小圆,实验记录单四份

【教学过程】

一,开门见山

1,直接出示(锅和饼):这是什么 这两样东西放在一起能做些什么

2,揭题:今天我们就来学习烙饼问题 (板书:烙饼问题)

二,探究新知

1,出示问题,理解题意

火车站附近的烙饼店来了五位顾客,每人想买一个饼,急着赶火车,限定时间不能超过15分钟。烙熟一个饼的两面各需要3分钟,店里唯一的烙饼锅一次只能放两个饼。同学们,你们说,这三个顾客能吃上烙饼吗

(1)生:猜想

(2)师:到底能不能呢 首先我们要理解题意,请问:

两面各需要3分钟什么意思 请用手势示意说明。 所以烙一个饼要几分钟

一次只能放两个饼什么意思 请用手势示意说明。 所以烙两个饼要几分钟

(3)如果烙熟1张饼,最少需要几分钟 (6分钟)谁来烙一烙

为什么是6分钟 (正面3分钟,反面3分钟)

(4)如果要烙两张饼的话,最少要几分钟 (6分钟)谁来烙一烙。

23=6(分)中23各指什么

师:1张饼最少要6分钟,烙2张饼应该12分钟才对,这怎么回事儿

(因为一个锅可以同时烙两张饼)

2,探究分组烙

(1)那4张饼怎么烙 (43=12(分)中的4指什么 )

(2)介绍分组烙法

(3)6张,8张,10张怎么烙 最少需要多少时间

(4)反馈:你发现了什么

3,探究轮流烙

(1)师:如果烙3张饼,怎样烙最省时呢

(2)立思考,小组合作烙一烙

1)请同学们静静的想一想,你打算怎么烙,用了几分钟,它是最少时间吗

2)有了想法后,先自用老师发给你的材料动手烙一烙,然后用自己的语言把烙的过程轻轻的说过同桌听。

师:想一想,我怎么向同学汇报,能让大家听的明白一些。

(3)反馈交流:指名生回答:

生1: 2张+1张,6分+6分=12分(让一生板演)

生2:口述板演:③②3分钟②拿掉

③①3分钟③好了

①②3分钟①②也好了

师:谁听明白了 指名生3再一次板演。师指导口述过程。

(4)同桌合作,动手用学具烙一烙

请每位同学用刚才这位同学的方法,烙一烙,算一算,验证一下这样烙是不是9分钟

(5)师:请同学比较这两种不同的烙法,为什么烙法2就来得省时间呢

①请每个同学静静地想一想,把两种方法对比一下,为什么 (立思考)

②汇报。根据生的汇报师小结:

烙法1第二次的时候只放1张饼,太浪费了。烙法2每次都是两张饼在同时烙,不浪费。看来我们烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。

(6)给烙法2取名字

师:烙法2还有那么多的数学奥秘,你能给她取个名字吗 (交替烙,轮流烙)

4,探究分组烙+轮流烙

(1)假如烙5张饼,怎样烙最省时间 谁来介绍一下方法

(2)介绍分组烙+轮流烙法

(3)现在你会解决了吗

火车站附近的烙饼店来了五位顾客,每人想买一个饼,急着赶火车,限定时间不能超过15分钟。烙熟一个饼的两面各需要3分钟,店里唯一的烙饼锅一次只能放两个饼。同学们,你们说,这三个顾客能吃上烙饼吗

(4)烙7张呢 9张呢 11张呢 怎样烙最省时间

a,同桌合作烙一烙,并完成把结果写在练习纸上

b,反馈:你发现了什么 (你怎么这么快就想出来了,有什么好方法吗 )

(5)那烙12个饼采用什么烙法省时呢,为什么

(6)那你觉得什么情况下分组烙省时,什么情况下两种方法结合省时

三,发展时间

1,一个锅一次能同时烙3个饼,两面各需要烙3分钟,烙熟6个饼最少需要多少时间

2,一个锅一次能同时煎2条鱼,两面各需要煎5分钟,煎熟3条鱼最少需要多少时间

四,课堂总结

师:学了今天这节课,你想说什么

五,拓展延伸

智力题:假如这个锅一次能烙10张饼,而现在有15张饼要烙。请你想一想,需要多少时间

教学反思:

∮饼中的数学问题》是人教版教材第七册数学广角中的内容,通过教学除了教给学生知识外,还要给学生留下点什么 我认为饼如何烙最优以及其中蕴含的规律固然重要,但这只是知识技能的范畴,我不想仅停留在就知识教知识的层面上,比知识更重要的是蕴含其中的数学思想和方法,这些才是学生持续发展,终生发展最重要的东西。本节课立足于培养学生良好的思维能力,从学生的生活经验和知识基础出发,创设问题情境。根据新课程标准,让学生借助学具操作,经历探索烙饼中数学知识的过程,逐步掌握烙饼的最佳方法,在解决问题中初步体会数学方法的应用价值,初步体会优化思想。

9、∮饼问题》教学设计

 教学目标

 基础目标

1.通过简单的实例,初步体会运筹思想在解决实际问题中的应用。

2.认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

 发展目标

1.通过实例理解优化的思想,形成从多种方案中寻找最优方案的意识,提高解

决问题的能力。

2.感受数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题

 教学重点:体会优化思想

教学难点:理解烙3张饼的最佳方法。

教学准备课件制作、确定分组形式

教学形式自主探究、小组合作(组内异质,组间同质,按学生能力由低→高依次编号①②③④)

教学过程

小班特征活动预设

引入

一、课前谈话,激发兴趣。

1.同学们,人有两大宝,你知道是什么吗?猜猜看。(双手和大脑

2.说得非常正确,今天我们就用自己的双手合大脑来解决生活中的一个数学问题,好不好?

二、创设情境,解读信息。

1.(板书:饼)饼,你吃过吗?吃过哪些饼呢?

2.(板书:烙)“烙”,是指放在器物上烤熟的意思,烙饼是把饼放在器物上烤熟。这节课,我们一起来研究和学习烙饼问题。

三、自主探究,研究烙法。

探究双数张饼的最优烙法

1.课件出示图:这位阿姨家今天来了好几位客人,阿姨要烙饼招待客人,我们一起帮阿姨烙饼好吗?你从图中读懂了哪些数学信息?(最多烙2张、两面都烙、每面3分钟)

(1)烙一张饼最快要几分钟呀?你是怎么想的?请同学们把一只手当饼,数学书当锅,一起演示烙的过程。

嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了。

烙了计策?听到几声嗤啦声,烙了几次?

(2)烙两张饼最快要几分钟呢?最快是什么意思?

谁来演示?

(3)为什么烙一张饼和烙2张饼的时间都是6分钟(一样多)呢?可以同时烙,同时烙有好处吗?“同时”这两个字用得好。老师给他写下来

现在,我们一起来烙2张饼(嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了,听到几声嗤啦声,烙了几次?)

(4)你可以将烙饼的过程写下来或画下来吗?试试看。

2.(1)有了刚才的经验,烙4张饼最少需要几分钟呀?你又是怎么想的?

(2)同桌再用双手做饼,来烙4张饼,开始!学生动手操作4张饼的烙法。请同学上台演示。烙了几次?

3.(1)现在我们已经有很多烙饼经验了,烙6张饼要几分钟呢?你又是怎么想的?(6+6+6=18分钟)

(2)谁愿意到黑板上用手做饼,烙给大家看一看。

指名学生上台,在黑板上画好的圆圈里演示6张饼的烙

法。

4.总结偶数张饼的烙法:两张两张同时烙。

请你仔细观察偶数饼的烙法:你发现了什么秘密?

四、合作交流、探究烙法。

烙三张饼问题的优化

1.爸爸回来了,那3张饼最少要几分钟呢?要达到最快,我们要考虑什么?把象棋当作饼,摆一摆,并把你的过程写下来或画下来。

要求:(1)先立思考

(2)小组讨论。

小组轮流说说自己是怎么安排的?烙了几次?自己的方案一共需要多长时间烙完?

记录员负责纪律你们组的方法。

汇报员准备汇报

【预设】方法一:一张一张地烙,共18分钟;

方法二:先烙两张,再烙一张,共12分钟;

方法三:先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。

【机动】如果学生想不到第三种方法则进行启发引导:

在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?

(3)讨论:

①上面三种方法是否都可行?哪种方法最好?为什么?

②为什么这样烙只需要9分钟?一开始的烙法有什么问题?

(一开始的烙法中,烙第三张饼时锅的另一半资源(烙的位置)浪费了。而交替烙则没有这个问题。)没错。交替烙最大限度地使用了锅的资源,从而节约了烙的时间。

小结:我们称这种最省时间的方法为烙3张饼的“最佳方法”

(4)好,一个同学的2只手当作2张饼,另一个同学的1只手当作1张饼,把2本书叠在一起当作锅,同桌合作烙3张饼,开始!同桌合作,开始烙饼。

2.下面该烙几张饼啦,5张饼,四人小组讨论一下,看哪个小组烙的最快。

预设:方法一:3+29+6=15分钟

方法二:演示同学们看明白了吗?

10、∮饼问题》教学设计

 一、教学内容

人教版义务教育课标实验教材(四上)112的例1

 二、教学目标

1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应 用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的.意识。

2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。

3、能积极地参与数学学习活动,体会到学习数学的乐趣。

 三、教学准备:

多媒体课件;教师准备3个圆片代饼;每组3个圆片;

 四、教学过程

(一)、谈话导入

同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。

(二)新课

1、自主学习

(1)出示本节课的学习目标,请同学们朗读。

(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?

(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?

(4)在小组内交流:烙三张饼最短用多少时间?

(5)小组汇报:如何烙三张饼用时最短?

第一张第二张第三张所花时间

第一次

第二次

第三次

2、探究烙饼最佳方法

(1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。

(2)你发现了什么?

(3)学生思考、观察、发现、汇报

烙的方法所花时间

3张饼

4张饼

5张饼

6张饼

7张饼

8张饼

9张饼

(三)过关检测

出示三道小题,请同学们解决,说一说解决的方法。

(四)、小节

师:这节课我们一块儿研究了烙饼问题,大家有什么收获?

小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。

11、数学广角烙饼问题教学设计

一、教学内容:

人教版数学四年级上册教材第112页到第113页例1。

二、教学目标:

1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

2、在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生观察能力与立思考能力,发展学生的思维。

3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。

三、教学重、难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼烙法。

四、教、学具准备:

圆形纸片若干、多媒体课件

五、教学过程:

(一)谈话导入:

同学们,你们早餐吃了什么呀?老师小时候住在农村,没什么好东西吃,最盼望的是妈妈给我烙饼吃。见过烙饼的吗?大家知道烙饼是怎么烙出来的吗?(看视频)烙饼里面可有大学问哦,这个烙饼问题可是数学界中的名题之一哦,大家有兴趣去研究它吗?好,今天我们就一起来研究烙饼问题!(板书课题)

(二)探究新知:

1、出示情境图,呈现问题。

(1)提问:你从画面上得到哪些数学信息?

(2)想想,如果只烙一张饼,需要多长时间?

(3)如果要烙两张饼,最快需要几分钟?

(4)学生说方案,对好的方法进行鼓励并命名。

(5)通过对比,初步培养学生寻找优化方案解决问题的意识。

2、探究三张饼的烙法。

(1)烙3张饼,至少需要多少时间?同座相互配合,用老师给你准备的三张小圆片烙一烙,想好后举手回答。

(2)学生分组动手操作。

(3)除了这些方法以外,那还有没有更好的方法呢?

(4)指名学生上台演示汇报。

(5)引导学生比较方法的异同优劣,并为最有优方法命名。进一步让学生感受到寻找优化方案解决问题的重要性。

(7)多媒体课件演示最佳方案,学生跟着老师一起再用最佳方案操作一遍。

3、讨论烙4—7张饼至少需要的时间。

(三)寻找规律:

1、初探规律,引起猜想质疑。

2、验证规律,总结规律。

3、同学们的发现很有价值,那为什么除了一张饼,无论饼的个数是双数还是单数,所需分钟数都等于饼的个数乘3呢?

4、强调:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

5、假如现在问你烙40张饼要多少时间,你能很快告诉大家答案吗?烙41张呢?你是怎么算出来的?

(四)解决问题:(课件展示)

师:类似烙饼这样的问题,在生活中还有许多,我们走进生活再看一看。

1、平底锅煎鱼:一只锅每次最多煎两条小黄鱼,煎1条鱼需要4分钟(正、反面各2分钟)。煎7条鱼最少需要多少时间?怎样煎?

2、复印51张文字资料,正、反面都要复印。复印一面要5秒钟时间,一次最多放两张,全部复印完要至少多少时间?

3、美味餐厅来了3个客人,每人点了两样菜,假设两个厨师做每个菜的时间相等,应该按怎样的顺序炒菜?如果你是餐厅经理,你会怎样安排上菜顺序使3个客人都满意呢?

(五)课后延伸:

一口大锅一次能烙10张饼,两面都要烙,每面需要3分钟。烙15张饼需要多少时间?

(六)课堂总结:

师:通过这节课的学习,你知道了什么?

我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都做一个勤于思考、珍惜时间的好孩子!

12、∮饼问题》教学设计

数学广角中的∮饼问题》, 其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。

“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。

重点:优化的思想——“同时”“节省时间”

小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。

难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”

突破这个难点时,我把“力气” 都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。

“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。

数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。

四年级数学下册∮饼问题》教学设计

教学内容:人教版四年级上册数学第105页例2。

教学目标:

1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与立思考能力,发展学生的思维。

3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。

教学重、难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼的烙法。

教具学具准备:

多媒体课件、圆形纸片若干。

教学过程:

一、直奔主题

同学们,今天我们一起来研究一个有趣的数学问题。

二、探究新知

1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。

2、研究烙一张饼需要的时间。

师问“烙一张饼需要多长时间?”学生口答说想法。

3、研究烙两张饼需要的时间。

师问:“烙两张饼需要多长时间?”学生口答说想法。

[设计意图:在烙三张饼前铺垫烙一张饼和两张饼的方法,利于学生由易到难由浅入深地思考问题,为新知的探究奠定基础。]

4、对比烙一张饼和烙两张饼需要的时间。

师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”

生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。

[设计意图:让学生对比烙1张饼和烙2张饼的最短时间,旨在让学生明白“同时烙”的优势在于节省时间,从而为下一步的继续探究提供思维支撑。]

5、研究烙三张饼所需要的时间

师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”

[设计意图:学生先自主尝试烙,不但给学生提供了思维的时间和空间,而且利于学生露自已的真实想法,为教师进一步调控课堂提供了依据。]

学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。

学生先演示,师再示范摆。

小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。

[设计意图:三张饼的最佳烙法是本节课的重点。重点问题重点处理,学生有了透彻清晰的理解才能为接下来的学习扫清障碍。]

6、研究烙四——七张饼所需要的时间。

教师依次提出问题,生或口算或演示。

[设计意图:授人以鱼不如授人以渔,有了前面的学习方法的“扶”,四——七张饼的烙法教师完全放手让学生去尝试交流,有助于培养学生的学习能力和立解决问题的能力。]

7、寻找规律

师:认真观察上面的表格,你能发现什么?

学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。

8、点明课题

师:这就是我们这节课要研究的烙饼问题(板书课题)

在学生解释图意的基础上用投影整理出以下三条:

生1:每次最多只能同时放两张饼。师:什么意思?

生2:一个饼的两面都要烙,烙一面需要花3分钟。

2.思考烙2个饼

那两张饼你准备怎么烙?请用手势说明一下。很好,在学数学时可以借助我们的身体和动作,来帮助我们思考。还有别的想法吗?

这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)

二、合作实践,探究新知

实践活动(一):探究烙3个饼(13分钟)

(1)小组合作,摆一摆。

师:同学们,请你来当大厨,你想怎样烙?

先立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当平底锅烙一烙。开始。(师巡视)

(2)说一说。指名汇报本组是怎样安排的。为了让大家看得清楚,我把每次烙每张饼的正反面的情景都展现出来。 预设

1.一张一张烙。(板书用时)

2.先烙两张,再烙一张。

(最优方法没有出现)

师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?

生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。

师:想一想,会不会还有更好的方法呢?

启发学生发现:让锅里每次都烙2张饼。

同桌合作探究最优烙法,汇报(交替烙)。

1.一张一张烙。(板书用时)

2.先烙两张,再烙一张。

3.用三张饼的最优方法烙。(交替烙)

师:谁还能再说一次这种烙法?(课件演示)

你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)

但是我想采访一下大家:对这三种方法,你有什么看法?

师小结:看来,充分利用锅的空间,不留空位,就能节省时间。

其他同学也能像这样用9分钟烙好3张饼吗?

同桌两人合作,用这种方法再试一试。师巡视

理解并掌握烙3张饼的最优方法。

小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)

实践活动(二):探究烙4、5张饼(6分钟)

这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。

1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)

师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。

2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。

师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)

实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)

1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。

2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?

那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需

要多长时间?怎么烙?真是反应迅速的小机灵!

三、结合生活,知识拓展。(2分钟)

刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!

四、课堂总结(4分钟)

师:同学们,这节课你有什么体会和收获?

小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。

希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!

13、数学广角烙饼问题教学设计

 教材简析:

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

 学情分析:

1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的'生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

3、学生认知障碍点:“优化”的理解。

 教学目标:

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

 教学重点:

体会优化思想。教学难点:探究解决问题的最佳方案。

 教学过程:

一、 教学环节:

1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。

二、 教师活动:

1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。

三、 预设学生行为:

1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

四、 设计意图:

从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

 板书设计:

烙饼问题

快速烙饼法

饼速X3=所需最少的时间

学生学习活动评价设计:

充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。

14、∮饼问题》教学设计

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:寻找合理、快捷的烙饼方案。

教材简析:∮饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

② 先同时烙两张,再单烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

15、∮饼问题》教学设计

一、教学目标

(一)过程与方法

1.通过简单的事例,使学生理解三张饼的最佳烙饼方法。

2.在解决问题的过程中,使学生认识到解决问题策略的多样性,渗透解决问题最优方案的意识。

(二)情感态度和价值观

使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

二、教学重难点

教学重点:使学生能从解决问题的多种方案中寻找出最优方案,初步体会优化的思想,形成优化的意识。

教学难点:寻找出解决问题的最优方案,形成优化的意识,提高解决实际问题的能力。

三、教学准备

课件、圆片等

四、教学过程

(一)情境创设,揭示课题

师:请大家猜猜老师的平时业余爱好有哪些?(出示老师在厨房里烙饼的情境)

师:厨房里会有什么数学问题呢?引出:“每次只能烙两张饼,两面都要烙,每面3分钟。”

师:根据以上信息请同学们立思考如何烙一张饼?两张饼?各需要多长时间?

【设计意图】从简单入手,通过烙一张与两张饼的时间对比,使学生充分认识到在同时能够烙两张饼的锅里,一次烙一张饼在时间上是显得多么的浪费,为下一个环节“三张饼“的最优化探究作好铺垫。

(二)探究新知

1.实践操作,探求策略

(1)探究双数饼

师:“烙1张饼要用多少时间呢?”

生:6分钟。

师:“烙2张饼最少要用多少时间呢?怎样烙?”

生:“还是6分钟。把两个饼一起放进锅里,先烙正面,再烙反面。”

师:“如果烙4张饼最少要用多少分钟?怎样烙?”

生1:先烙2张,用6分钟,再烙两张,6分钟,两个6分钟共12分钟。

生2:烙1次用3分钟,4张饼共8个面,每次两个面,共烙4次,4×3=12分“6张呢?8张呢?请你思考一下,把你的方法在表1里写一写。交流方法。

小结:当饼的个数是双数时,怎么计算时间?所需时间与烙2个饼所需时间有什么关系?

教师小结:“刚才我们都是每次烙两个饼,前两个饼的两面都烙熟后,再烙后两个饼。

【设计意图】抓住重点词“同时”“节省时间”,渗透优化的思想。通过老仪仗兵让学生进行比较,明白“同时烙两张”会“节省时间”,从而初步感知“优化的思想”。

(2)探究单数饼

师:“现在要烙3张饼,最少要用多少时间呢?怎样烙?”

【预设】

如有学生提出反对意见:“不对!烙3个饼不应该是12分钟,只要9分钟。”

师:“你为什么认为只要9分钟?”

生:“如果像他这样烙,在烙第三个饼的时候,锅的一半位置是空着的,这不浪费了时间吗?我把前两个饼烙熟一面后,马上换上第三个继续烙;然后将取出的那一个放回锅里和第三个一起烙另一面。锅就不会有空位,所以只要9分钟。”

①合作探究

师:“你们听明白他的意思了吗?这种方法是不是行得通呢?大家动手试一下吧!为便于操作,建议各小组在试验中给每个饼编号、并记录烙饼步骤及所需时间。”

(如没有学生想出这种最佳的方法,教师可以让学生小组讨论然后汇报。)

②交流汇报,请一个小组上台用“饼”演示。

③用课件小结:

第一次:烙1、2号饼的正面,用3分钟。

第二次:把2号饼暂时取出,把3号饼放入,烙1号饼的反面和3号饼的正面,又用3分钟。第三次:取出1号饼,放入2号饼,烙2、3号饼的反面,用3分钟。

一共用9分钟。

师:这种烙法为什么会节省时间呢?

我们注意了充分利用锅,不让它有空的时候,所以节省了时间,今天我们研究的就是怎样合理安排时间,板书课题。

【设计意图】如何尽快地烙三张饼,是本节课的难点。这里通过让学生自己去动手试一试,烙一烙,说一说的方法,让学生认识到尽量不让锅空着才是最优方案。使学生在实践中感悟到解决问题策略的多样化与方法的合理性。

④探究单数饼计算时间方法

师:“那么烙5个饼你打算怎么烙?先烙几张?再烙几张?最少要用多少时间呢?

生:先烙2张用6分钟,再烙3张用9分钟,一共15分钟。

师:烙7个饼呢?……”自己试着写一写,同桌互相说一说。

交流汇报。

师:“当饼的个数是单数时,所需时间有什么规律?怎么烙?”

【预设】

生1:“只有烙1个饼时锅才空着一部分,而烙两个以上的饼都有可通过合理安排始终不让锅里出现空位。所以每增加一个饼,时间只增加3分钟。”

生2:“实际上烙2张也好,3张也好,都是为了使这口锅在烙饼时一直不会有空位。”

师总结:为了能节省时间,我们要最大限度的利用时间和空间。

【设计意图】以两三个饼的最优化方法为基础,拓展“4、5、6、7“甚至更多的最优化方案,这里完全放手让学生去研究发现规律,进一步体现了学习的

(四)总结

今天我们学习了怎样合理安排时间,说说学习感受。

解决问题的方法很多,我们要善于思考,找到最好的方法,提高做事的效率。

【设计意图】此环节中“今天你有什么收获吗?”这个问题的提出,主要是想培养学生整理、归纳的意识和习惯,提高学好数学的自信心。

16、∮饼问题》教学设计

教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。

教学目标:1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。

2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题,初步培养学生的应用意识和解决实际问题的能力。

4、使学生逐渐养成合理安排时间的良好习惯。

教学重点:寻找合理、快捷的烙饼方案。

教学难点:初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。

教具准备:课件、三张圆片

一、创设情景导入新课。

课件多媒体出示图片:鸡蛋。

师:孩子们,请看,这是——鸡蛋。煮熟一个鸡蛋大约用5分钟的时间,煮熟5个鸡蛋大约用多长时?(学生作答)

师:孩子们,在我们的生活中有很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的策略。(板书课题)

二、自主探索,探究烙法

(一):解读信息,理解烙饼规则

课件出示情境:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?(生答)

师:每次只能烙两张饼是什么意思?两面都要烙呢?(生答)

(二)观察法,探究两张饼的最优烙法

1、明确烙一张饼的时间。

师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)

为什么是6分钟?(生答)

师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。

板书:一张: 正 反①②③

3 3 6分

2、研究2张饼的最优方案

师:想一想:如果烙两张饼,怎么烙?有几种可能?

生:12分钟

师:你是怎么烙的?(生答,师板书)

板书:两张:①正 ①反 ②正 ②反

3 3 3 3 12分

师:还有不同意见吗?生:6分钟。

师:你是怎么烙的?(生答)师:你能来给大家演示一下吗?(生演示,师板书)

两张:①正②正 ①反②反

3 3 6分

师:孩子们,现在烙两张饼出现了两种不同的答案,哪种烙法最快?那为什么第一种烙法多用了6分钟?

师:也就是说本来可以两张饼放在一起烙,而第一种每次只烙了一张,浪费了空间,也就浪费了时间,所以多用了6分钟。现在如果要尽快的把饼烙熟,你会选择哪种烙法?(生答)我们给第二种烙法取一个名字,就叫两饼同烙。(板书)

(三)动手操作,探究3张饼的最优烙法

师:孩子们,请看大屏幕,现在妈妈要烙几张饼。(3张)看看小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢? (生答)

师:说得真好。下面我们就一起来动手操作一下,看看怎样才能把3张饼尽快的烙熟,在动手之前,请看清要求。课件出示数学信息,探究要求。

师:请小组长拿出3张圆片,就当3张饼,小组合作,现在开始。(生摆,师巡视)

师:同学们,你们的饼烙熟了吗?哪个小组来汇报一下,你们烙3张饼用了多少时间?(生:12分钟)

说说你是怎么烙的?(生说,师板书)

3张 ①正②正 ①反②反 ③正 ③ 反 12分

师:还有不同意见吗?(生:9分钟)请你来说说是怎么烙的?(生边说边演示,师板书)

3张 : ①正②正 ①反③正 ②反③ 反 9分

师:同学们,请同学比较这两种不同的烙法,为什么都是烙3个饼一种需要4次,另一种需要3次?

引导归纳:常规的烙法,先把两个饼放进去,正反面烙完后,再烙第三个。第三个饼的两面得一面一面来,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实快。这个烙法帮我们解决了数学难题,你能给她取个名字吗?(交替烙、轮流烙)板书:交替烙

同学们,不管做什么事情,事先作好合理安排,这样就能节约时间,提高效率。所以,生活中我们要合理安排时间。

三、总结方法,探究规律

师:接下去要研究4个饼,还是这几个条件,不过要求提高了,你能不能不动手摆就知道怎么烙最节省时间?先静静的想一下,怎样讲解让大家能听明白?实在想不出来的只好借助学具帮忙帮忙。

1、反馈烙4个饼的方法。

师:如果烙4个饼,怎么烙?(生答)师板4分成2个2个。能不能说得更简单一些?你可以说2个2个烙。最少花几分钟?如果老师请一个同学上来烙一烙,我们帮她数烙饼的次数,就会发现4个饼最少烙几次?

2、反馈烙5个饼

师:如果烙5个饼,怎么烙?你能不能马上说出烙5个饼最少烙几次吗?最少花几分钟?(生答)

烙6、7、8、9、10个饼出示课件

师:请你们仔细观察大屏幕上的表格,如果要烙6、7、8、9、10个饼,分别最少要烙几次,需要多长时间?(生答)

师:请仔细观察这个表格,你发现了什么?

得出:最短的总时间=烙饼的次数×烙每一面饼时间 (1除外)

烙饼的次数=烙饼的个数(1除外)

师:找着了规律解决问题就容易多了,接下来我们运用这条公式来解决一个问题。如:如果要给我们班的每一位同学都烙一个饼,最少需要几次?最少需要几分钟?

所以,在生活节奏如此之快的社会里,我们更应该合理安排时间,去做更多的事。

四、结合生活、实践应用:

五、课堂总结

师:学了今天这节课,你想说什么?

师小结:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人。

17、∮饼问题》优秀教学设计

 教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

 教学重点:

初步培养学生形成从多种方案中寻找最优方案的意识。

 教学难点:

寻找合理、快捷的烙饼方案。

 教材简析:

∮饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

 教学过程:

一、预设情景,走进生活。

师:同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗?师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设:

①一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)

②先同时烙两张,再单烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)

师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。板书:交替烙法。

(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)

师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)

生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

18、∮饼问题》优秀教学设计

 教材简析:

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

 学情分析:

1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

3、学生认知障碍点:“优化”的理解。

 教学目标:

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

 教学重点:

体会优化思想。教学难点:探究解决问题的最佳方案。

 教学过程:

一、教学环节:

1、谈话引入;

2、情境引入,学习新知;

3、实践应用;

4、全课总结,寻找规律。

二、教师活动:

1、制作课件(妈妈为家人烙饼);

2、三张圆纸片。

三、预设学生行为:

1、可能见过烙饼,可能没见过;

2、学生演示烙饼(怎样快));

3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);

4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

四、设计意图:

从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

 板书设计:

烙饼问题

快速烙饼法

饼速X3=所需最少的时间